
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
bertini@dsi.unifi.it

http://www.dsi.unifi.it/~bertini/

mailto:bertini@dsi.unifi.it
mailto:bertini@dsi.unifi.it
http://viplab.dsi.unifi.it/~bertini
http://viplab.dsi.unifi.it/~bertini

“Hello world”: a review

Some differences between C
and C++

• Let’s review some differences between C and
C++ looking at the “Hello world” program

#include <iostream>

int main() {
// let’s greet
std::cout << "Hello, ";
string name = "world\n";
std::cout << name;

}

The main function

• In C++ there are two variants of the function
main():

• int main()

• int main(int argc, char **argv)

• It is not required to use an explicit return
statement at the end of main. If omitted main
returns 0.

Comments

• There’s a new (compact) comment style:
Two types:

• C Style: /* block comment */

• Usually only used for block comments at the top
of programs, classes, functions etc.

• Can extend over multiple lines

• C++ style: //comment to end of line

• Usually used for most in line comments against
variables or algorithm code

C++ library headers

• In C++ all the library headers have names
without the .h extension

• You can still use C header files with the .h
extension (but you shouldn’t)

• Instead, C++ versions of C header files have the
same name with a ‘c’ in front, e.g.:

#include <cmath>

Variable declared as needed

• In C we are required to declare all variables either globally or at the
top of a function before any executable code

• In C++ we can declare variable anywhere, but always before they are
used

• We tend to declare variables only when we need them and as
close as possible to their use

• A control variable for a for loop is often declared inside the for
loop, e.g.

for (int i = 0; i < 100; i++) {

Default function arguments

• In C++ it is possible to provide “default arguments” when
defining a function. These arguments are supplied by the
compiler when they are not specified by the programmer.

• Functions may be defined with more than one default
argument. They are used only in function calls where
trailing arguments are omitted — they must be the last
argument(s).

• Default arguments must be known at compile-time since at
that moment arguments are supplied to functions.
Therefore, the default arguments must be mentioned at the
function's declaration, rather than at its implementation.

Default function arguments - cont.

Example:

• // sample header file
extern void three_ints(int a, int b=4,
int c=3);

• // code of function in .cpp file
void three_ints(int a, int b, int c) {
 ...
}

Type-safe C++ Stream I/O

• Avoid using the type-unsafe C I/O library
(printf, scanf, etc.), where you need to specify
the format of the data (e.g. “%d”)

• C++ overloads the right-shift operator (>>) for
input and the left-shift operator (<<) for output

• The target of the I/O is a stream, eg. cin
(standard input), cout (standard output) or a
file stream

Operator overloading

• We’ll come back on this later but notice:

in C++ it is possible to define functions and
operators having identical names but
performing different actions. The functions
must differ in their parameter lists (and/or in
their const attribute).

in this example we overloaded << and >>

C++ Style Strings

• Type safe, space-safe!

• Contrast with C style nul terminated strings

• Can input or manipulate C++ strings without
worrying about overrunning the available memory
-the string will expand as required!

• But the only way to easily declare a constant sting
or string literal is as a C-style nul terminated
string. , e.g. :

string s = "world";

Namespace

• A facility for partitioning names (of types, variables, functions
etc.)

• Allows large programs to be built from various components
without risk of name clashes

• A namespace is essentially the ability of the compiler to keep
names of functions, variables and type, in separate groupings
so that names in different groups can be the same without
clashing with each other.

• C++ Standard Library has names in a namespace called std as
in std::cout

Qualified names

• A name can be qualified, using the :: (scope
resolution) operator, with the namespace in
which it has been declared. For example,
std::cin refers to the name cin from the
namespace std.

• the operator :: resolves the scope of the
variable/method we are selecting: we are
looking for the one of the class whose name is
to its left

using directive

• If a name is used frequently within a segment
of code you can place a using declaration into
the source file, e.g. using std::cin; would
say that all the cins refer to the one from the
namespace std.

• to refer to any of the names in a namespace as
if they were declared globally, you can place a
using directive into the source file, e.g.:
using namespace std; brings all the names
from the namespace std into use.

Using C functions in C++

• Name mangling (sometimes called name decoration) is
a technique used to solve various problems caused by
the need to resolve unique names for programming
entities in many modern programming languages.

• It provides a way of encoding additional information in
the name of a function, structure, class or another
datatype in order to pass more semantic information
from the compilers to linkers.

• C++ compilers use it, C compilers do not. As C
language definitions are unmangled, the C++ compiler
needs to avoid mangling references to these
identifiers.

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language

Using C functions in C++ - cont.

• To use a C function in a C++ program we need to declare it as... C function, e.g.:

extern "C" void *xmalloc(int size);

or:

extern "C"{

 // C-declarations go in here
 void *xmalloc(int size);
}

or:

extern "C"{

 #include <xmalloc.h> // contains declaration of xmalloc

}

Using C functions in C++ - cont.

• Another common solution is to exploit the __cplusplus
symbol defined by the C++ compilers:

// This is xmalloc.h
#ifdef __cplusplus
extern "C" {
#endif
 /* declaration of C-data and functions are
inserted here. */
 void *xmalloc(int size);

#ifdef __cplusplus
}
#endif

Credits

• These slides are (heavily) based on the
material of Dr. Ian Richards, CSC2402, Univ. of
Southern Queensland

